Adaptive scene dependent filters for segmentation and online learning of visual objects
نویسندگان
چکیده
We propose the Adaptive Scene Dependent Filter (ASDF) hierarchy for unsupervised learning of image segmentation, which integrates several processing pathways into a flexible, highly dynamic, and real-time capable vision architecture. It is based on forming a combined feature space from basic feature maps like, color, disparity, and pixel position. To guarantee real-time performance, we apply an enhanced vector quantization method to partition this feature space. The learned codebook defines corresponding best-match segments for each prototype and yields an oversegmentation of the object and the surround. The segments are recombined into a final object segmentation mask based on a relevance map, which encodes a coarse bottom-up hypothesis where the object is located in the image. We apply the ASDF hierarchy for preprocessing input images in a feature-based biologically motivated object recognition learning architecture. and show experiments with this real-time vision system running at 6 Hz including the online learning of the segmentation. Because interaction with user is not perfect, the real world system acquires useful views effectively only at about 1.5 Hz, but we show that for training a new object one hundred views taking only one minute of interaction time is sufficient.
منابع مشابه
Adaptive scene-dependent filters in online learning environments
In this paper we propose the Adaptive Scene Dependent Filters (ASDF) to enhance the online learning capabilities of an object recognition system in real-world scenes. The ASDF method proposed extends the idea of unsupervised segmentation to a flexible, highly dynamic image segmentation architecture. We combine unsupervised segmentation to define coherent groups of pixels with a recombination st...
متن کاملModified CLPSO-based fuzzy classification System: Color Image Segmentation
Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...
متن کاملThe Potentiality of Dynamic Assessment in Massive Open Online Courses (MOOCs): The Case of Listening Comprehension MOOCs
Massive Open Online Courses (MOOCs) as a new shaking educational development provide the scene for achieving social inclusion and dissemination of knowledge. Anyhow, facilitating network learning experiences through creating an adaptive learning environment can pave the way for this open and energetic way to learning. The present study aimed to explore the possible role of Dynamic Assessment (D...
متن کاملDetecting and counting vehicles using adaptive background subtraction and morphological operators in real time systems
vehicle detection and classification of vehicles play an important role in decision making for the purpose of traffic control and management.this paper presents novel approach of automating detecting and counting vehicles for traffic monitoring through the usage of background subtraction and morphological operators. We present adaptive background subtraction that is compatible with weather and ...
متن کاملThe effects of segmentation and redundancy methods on cognitive load and vocabulary learning and comprehension of English lessons in a multimedia learning environment
The present study was conducted with the aim of the effects of segmentation and redundancy methods on cognitive load and vocabulary learning and comprehension of English lessons in a multimedia learning environment.The purpose of this study is an applied research and a real experimental study. The statistical population of the present study includes all people aged 14 to 16 who are enrolled in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 70 شماره
صفحات -
تاریخ انتشار 2007